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Status Report for May 1995 

This is the last of the monthly reports for this contract (F30602-91-C-0041). Including 
the one-year extension, that makes this the 36th report. According to Lou Hoebel we are 
next in line for renewal if the freeze on ARPA funding is lifted. We were hoping to fund 
two graduate students and one post doctoral student for the summer. However, if we don't 
hear something soon, Shieu-Hong Lin, Lloyd Greenwald, and Jak Kirman will have to make 
other arrangements for the summer. 

The research that we carried out for this contract has been quite successful, and efforts 
will continue to refine and distribute the software and algorithms that we developed during 
the past 36 months. Perhaps it is customary to spend the final report boasting of successes, 
but our results are chronicled in numerous conference papers, journal articles and book 
chapters. I think it might be more appropriate to give you some idea of the new directions 
that we are heading in as we approach this milestone in our research. 

For the past nine months one of us (Tom Dean) has been visiting labs in the Western 
part of the country (University of Washington, Oregon State, University of Oregon and 
GIRL, University of British Columbia, Stanford, Berkeley, Rockwell (both the Palo Alto 
and Thousand Oaks science centers), University of Southern California and ISI, Los Alamos 
National Laboratories, and the Santa Fe Institute). One thing we have repeatedly learned 
is that artificial intelligence as a field is provincial in its technological breadth and relatively 
primitive in terms of its mathematical sophistication. During the period of this contract, 
we have studied and incorporated several new mathematical methods into our analysis and 
algorithm designs. These methods range from mathematical programming in operations 
research and nonlinear optimization techniques from mechanical engineering to time-series 
analysis in physics and related disciplines. 

These studies have both increased our effectiveness (new tools and new tricks) and 
made it possible for us to communicate our results and our problems to a wider audience of 
researchers. At the Santa Fe Institute, we were able to quickly sift through the research con- 
cerning nonlinear dynamical systems to find techniques of use in our work on optimizing and 
learning dynamical systems for problems involving complex dynamics such as transporta- 
tion scheduling. Our search spread through the Internet to reach researchers like Herbert 
Edelsbrunner (University of Illinois), Andrew Moore (Carnegie Mellon), Stefan Bornholdt 
(Universitaet Kiel), Bernard Chazelle (Princeton), Yoshua Bengio (Montreal), and many 
others from diverse backgrounds. As a consequence of our studies, we are putting together 
a proposal for a Spring Symposium on large dynamical systems with Melanie Mitchell 
(Santa Fe Institute) and Jim Crutchfield (Berkeley) and pursuing joint work with Moises 
Goldszmidt and Nir Friedman at Rockwell Palo Alto Research. The primary focus of this 
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new research effort is to develop better methods for learning dynamical system models. 
Ready access to such models has presented 'knowledge acquisition' bottleneck in our work 
on controlling dynamical systems corresponding to planning and scheduling problem. 

In the last week, we have been investigating the use of techniques from statistical me- 
chanics to solve very large optimization problems. There is an interesting phenomenon 
concerning the difficulty of optimization problems that as the number of relevant entities 
(aircraft, trucks) increases assumptions of uniformity can play an increasingly important 
role in reducing complexity. Even in medium-scale problems such as those faced by the mil- 
itary in transportation control and cities in highway traffic control, statistical techniques 
that rely on aggregation and (quasi) uniform behavior appear to be effective. We are partic- 
ularly interested in hybrid methods that combine techniques from statistical mechanics and 
combinatorial optimization techniques that do differentiate with regard to local behavior. 

In the remainder of this report, we relate some of our recent enquiries with regard to 
learning dynamical systems from data. Some discussion of this area was included in the 
previous month's report, but the following discussion pertains specifically to techniques 
that come from nonlinear dynamical systems theory. Hopefully, you will find it interesting. 

Inferring Dynamical Systems: A Time Series Approach 

We are interested in learning models of dynamical systems from data. In particular, 
trying to infer compact, stochastic finite automata consistent with the observed data. In 
work with Dana Angluin (Yale) and Jeff Vitter (Duke), we investigated the problem of 
recovering the structure of the underlying dynamical system (the state transition diagram) 
by actively 'exploring' the automaton. Exploring consists of moving about on the automa- 
ton by selecting inputs (the labels of edges) and observing the outputs of the resulting 
states. In the problems we are concerned with, both observations and state transitions are 
stochastic. These problems were motivated by navigation and map learning problems in 
robotics, and the results have a PAC flavor (the probably approximately correct model of 
Les Valiant). 

In the robotics applications, states correspond to discrete locations and the size of the 
robot's environment is measured in terms of the graph of locations. In these applications, it 
is reasonable for the algorithms to be polynomial in the size of the state space. In our work 
for the planning initiative, we have been looking at much more complicated dynamical 
systems such as those governing transportation systems (air traffic, and urban package 
delivery). These applications have very large state spaces, but they often have lots of 
structure. 

Suppose that there are N state variables, where a state variable might correspond to 
the location of a vehicle, whether a piece of material handling equipment is currently in 



use, or whether a gate in an airport terminal is occupied by an aircraft. The state space 
is at least 2N in the case of binary variables and most of our variables are not binary 
(though they are discrete). Let f(yt) = yt+i represent a state transition function which is 
often considered as a random function, Pr(/(j/i)|i/t). In many practical problems, the state 
transition function / can be 'factored' into N simpler functions, one for each state variable, 
each of which is a function from M state variables, where M is a constant and M < N. We 
have /(i) = (gi(x),.. .,g^(x)) such that each of the 5,- can be represented using a table of 
size 2M and the entire state transition function can be compactly represented in 0(N2M) 
space. 

Now suppose that we don't know this factored representation. Suppose that we only 
have a sequence of observations concerning flights into and out of a given airport. Can we 
infer a stochastic model that will allow us to make reasonable predictions concerning the 
arrival times for aircraft originating from other airports? There is also the related control 
problems {e.g., gate or crew scheduling), but, in this report, we focus on simply learning 
the dynamics. 

There are a number of methods we might use for learning the dynamics. Delay- 
coordinate embedding is the method of choice among many in time-series analysis. A 
closely related method for stochastic processes is the Baum-Welsh method for inferring 
hidden Markov models. Common to both of these methods is the idea of constructing a 
model whose state space consists of lag vectors corresponding to sequences of observations, 
{(xt,..., xt+r)\t = 1,...}, where x(yt) = xt is the observable output of the dynamical sys- 
tem at time t. (There is an appendix at the end of this report with a somewhat more 
detailed introduction to delay-coordinate embedding techniques. In particular, the ap- 
pendix provides a clearer explanation of terms such as "attractor" and "diffeomorphism" 
which are used in the following discussion.) It can be shown, for example, that under a 
wide range of conditions the attractor (subspace) described by the dynamics of the actual 
system is diffeomorphic to the trajectory (subspace) described by the lag vectors corre- 
sponding to (suitably long) sequences of observations. The required length for lag vectors 
can be bounded by the dimension of attractor of the underlying dynamical system. 

Now suppose that the the underlying dynamical system can be represented as a state 
transition diagram in which the states are simply labeled 1,.. .,2^ (again assuming boolean 
variables for simplicity). Is the ^-dimensional structure of the state space apparent in 
any properties of the graph corresponding to the state-transition diagram? What is a 
reasonable measure of the 'dimension' of the underlying attractor in this discrete version of 
the problem? Is there a useful analog of the correlation dimension1 for discrete stochastic 
dynamical systems? 

The correlation dimension is obtained by analyzing the correlation of a set of points that has been moving 
on an attractor for some time. The correlation dimension weights the points on the attractor according to 



We are searching for useful methods of categorizing such dynamical systems. These 
methods might be useful in two ways. First, we may be able to devise efficient approxi- 
mation algorithms (polynomial in N) for particular classes of problems. Second, we may 
be able to estimate the 'dimension' of an attractor from data and use this information to 
expedite inference (say, by determining the length of an appropriate lag vector). 

There are technical problems in integrating ideas from nonlinear dynamical systems 
where dynamics are represented as differential maps and ideas from computer science where 
dynamics is discrete time and space, but perhaps not as difficult problems as your might 
imagine. Oddly enough, nonlinear dynamics is typically interested in noisy observations of 
complex (read possibly chaotic) deterministic systems. The interplay between deterministic 
and stochastic, systems (in which the aim is to recover the relevant distributions) is subtle. 
Physicists assume that the observations are discrete and bounded both in precision and 
range; this impDes that our understanding of physical systems is necessarily in terms of 
a discrete approximation of the real world. One of the most difficult challenges concerns 
translating the language of smooth mappings and continuous manifolds into the language 
of graphs. 

The notion of dimension mentioned earlier is a prime example of the difficult of trans- 
lating ideas from differential geometry to discrete mathematics. Differential geometry is 
the source of many of our intuitions about real physical phenomena; it is critical that we 
be able to apply those intuitions in the case of discrete models. The transitions in a state 
transition graph are simply edges and therefore 1-dimensional. In order to apply ideas 
from differential geometry we have to introduce higher dimensional objects involving 3 and 
more states at a time. These objects would then form triangles or higher-dimensional sim- 
plices. In addition, we would have to introduce some notion of distance in order to get to 
a topological or geometric interpretation. It is currently not clear how this approach will 
work out mathematically, but it is definitely interesting as a means of introducing power- 
ful techniques to solving combinatorial problems. As usual, pointers and suggestions are 
welcome. 

Recent Publications 

Adnan Darwiche and Tom Dean are in the process of completing work on a video 
describing recent advances in probabilistic diagnostic systems. We hope to have a copy 
of this video for the Planning Initiative Workshop meeting in San Diego in June. This 
video was made with help from Rockwell International and sponsored by the American 
Association for Artificial Intelligence. 

how frequently they are visited (in contrast to the geometric dimension of the attractor in which all points 
are weighted identically). For a continuous attractor, if the correlation dimension is much greater than 1 
and is not an integer, then this is an indication that the attractor is strange and the dynamics are chaotic. 



Postscript versions of our recently accepted papers in IJCAI and UAI are available on 
line using the following URLs. 

ftp://ftp.cs.brown.edu/u/tld/postscript/DeanandLinIJCAI-95.ps 
ftp://ftp.cs.brown.edu/u/tld/postscript/LittmanDeanandKaelblingUAI-95.ps 

You also might be interested in an article on planning and scheduling which will be pubbshed 
in the CRC "Handbook on Computer Science and Engineering." This paper was written 
by Tom Dean and Subbarao Kambhampati (Arizona State). Postscript for this article can 
be found using the following URL. 

ftp://ftp.cs.brown.edu/u/tld/postscript/DeanandKambhampatiCRC-95.ps 

Appendix: Delay-Coordinate Embedding 

In this appendix, I'll try to summarize what I know about delay-coordinate embed- 
ding techniques as they are used in time-series prediction and nonlinear dynamical systems 
theory. I was first introduced to these techniques by Paul Dagum at Rockwell Palo Alto 
Research who used the delay-coordinate embedding to monitor and predict respiratory 
crises for infants with ARDS (adult respiratory distress syndrome). (There is no agreed 
upon physiological model for ARDS. To complicate matters, the time-series analysis had to 
be done with data gathered while patients were undergoing treatment. Much as the data 
would be gathered say in learning the dynamics for a transportation problem. The task 
was ultimately to generate a better treatment policy. There was no attempt to construct 
a physiological model; the goal was simply to predict the evolution of physiological mea- 
surements as a consequence of specific treatments.) When I got to the Santa Fe Institute, 
I found that lots of people were using these techniques, from the people doing time-series 
prediction (Farmer, Lapedes, Casdagli) to the emergent computation people (Crutchfield, 
Mitchell, Hanson). 

The basic idea is quite elegant and almost too good to be true. As with many such ideas, 
its application in practice is quite complicated. Nevertheless, delay-coordinate embedding 
is the method of choice in many time-series prediction applications. The idea is as follows. 
Assume we have a sequence of measurements of some unknown dynamical system whose 
governing equations are specified by dy/dt = /(y), y e Än, and an output function x(y). 
In particular, we have a series of time-delayed observations, {xt = x(yt)}^.0. The delay 
between measurements is fixed and denoted by r. These criteria are met for example in 
the observations of many transportation problems. 

Takens [1980] showed that for some integer d the space of (lag) vectors x = (xt,..., xt+d) 
is diffeomorphic {i.e., the behavior of x and y differ by a smooth local invertible change 



of coordinates, referred to as an embedding) to the solution space of /, for almost every 
possible choice of /, x, and r as long as d is large enough, x depends on at least some 
components of y, and the remaining components of y are coupled by the governing equations 
to the ones that influence x. 

Originally, Takens applied his results to detecting (inferring) attractors in turbulence 
(a classic example of a chaotic dynamical system). Physicists use the term 'attractor' to 
refer to the asymptotic, steady-state behavior of a physical system, e.g., the behavior of a 
stochastic system once it has entered an ergodic subset of the state space. In particular, 
the initial transient behavior of the system is ignored. This attractor may be complicated, 
involving several 'strange' attractors (transient phases corresponding to quasi-stable cycles 
that the system switches between in a manner that is often difficult to predict). 

Obviously, there are degenerate choices for r for which the embedding fails. But these 
choices are of measure zero in most cases and reasonable methods of sampling and intrinsic 
noise in observation avoid problems in practice. There is a large body of theory and 
practice regarding how to choose d and its connection to the dimensionality of the underlying 
manifold (the solution space of /). Once you have chosen an appropriate delay r and 
embedding dimension d, tracing out the attractor and extrapolating from the resulting map 
is relatively straightforward. Most practical delay-coordinate embedding methods involve 
preprocessing the data using some pretty sophisticated filters, but this preprocessing is 
orthogonal to the issues concerning the application of delay-coordinate embedding. 

Techniques similar to delay-coordinate embedding have been used to infer finite state 
models of dynamical systems. Crutchfield and Young's [1989] work on «-machines is one 
such example. Crutchfield and Young talk about the general task of machine reconstruction. 
An (-machine is a machine reconstructed from a time-series of observations whose precision 
is related to «. The embedding for an (-machine is defined on a d-dimensional discrete 
lattice of cells of size (. Inference proceeds by fixing d (the width of a window on the data) 
and building a tree to represent states of the dynamical system. The methods are similar to 
those used in constructing a code book in data compression. If d is chosen appropriately the 
resulting code book allows you to assign names to states of the machine and reconstruct 
the transition table. These methods can be extended to reconstruct the full probability 
distribution for a stochastic process. 

The method of machine reconstruction described above will fail for cases in which the 
data is not generated by a finite state process. Crutchfield and Young describe results 
concerning the reconstruction of machines modeling dynamical systems based on the lo- 
gistic function at the onset of chaos. In this case, there is a phase transition such that 
the dynamics changes from that which can be modeled by a finite state machine to that 
requiring a stack-based machine (e.g., a push down automaton). Such phase transitions are 



of particular interest in what has become called "emergent computation."- The method of 
Crutchfield and Young is remarkably similar to the idea of using distinguishing sequences 
to identify states in learning automata which we employed in [Dean et a/., 1995]. We 
hope to use some of our insights regarding the computational complexity of learning such 
distinguishing sequences to understand more about the methods of Crutchfield and Young. 

A natural question to ask is whether methods such as machine reconstruction provide 
any insight into learning stochastic models (recovering the distribution governing state 
transitions) in the case of discrete-time and discrete-space processes. It may be that the 
essential insights are already a part of the literature on compression and hidden Markov 
models. However, there are a variety of specialized techniques that seem to be of imme- 
diate relevance to the problem of inferring probabilistic models based on Bayes networks 
[Heckerman, 1994]. 


